Reliability of Gait Analyst Pro for Measuring Spatial-Temporal Gait Parameters in Pilgrimages

Authors

  • Hanan Ahmed Demyati Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.
  • Abdulelah Muneer Radhwan Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.
  • Yasir Abdulaziz Alrubaiani Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.
  • Tamador Ibrahem Alshahrani Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.
  • Tareq Yahia Ayoub Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.
  • Dina Azam Khashougji Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.
  • Raneem Yousef Alshahrani Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.
  • Mohammed Khalid Saber Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.
  • Mohamed Moslem Alharbi Department of Physiotherapy, Prince Sultan Armed Forces Hospital- Madinah, Ad Difa, Madinah 42375, Saudi Arabia.

DOI:

https://doi.org/10.62464/ijoprp.v3i11.65

Keywords:

Gait Analyst Pro, Spatial-Temporal Gait, Hajj Pilgrimage , Reliability , Saudi Arabia.

Abstract

Background: Accurate gait assessments are critical during events such as the Hajj pilgrimage, where participants walk long distances under challenging conditions, particularly elderly individuals with higher mobility risk. Reliable gait analysis tools are essential for determining whether mobility aids or wheelchairs are needed for support. The aim is to assess the intra-rater and inter-rater reliability of Gait Analyst Pro under both TM and OG walking conditions. Methodology: Seventy participants were recruited from a primary healthcare centre serving pilgrims. Fifty performed TM walking, and 20 completed OG walking. Gait Analyst Pro measured spatial-temporal gait parameters. Intra-rater and inter-rater reliability was analyzed using intraclass correlation coefficients (ICCs). Results: Higher intra-rater reliability was observed for TM walking (ICCs: 0.789–0.854) compared to OG walking (ICCs: 0.505–0.730). Similarly, inter-rater reliability was stronger for TM assessments (ICC = 0.784) than OG assessments (ICC = 0.503), highlighting the impact of environmental variability. A moderate positive correlation (ρ = 0.368, p = 0.009) was found between TM and OG walking speeds. ANOVA results indicated significant group differences for OG walking speeds (p < 0.001), while differences for TM walking speeds were not significant (p = 0.086). Conclusion: Gait Analyst Pro is highly reliable in controlled TM environments, but variability increases in OG conditions. These findings underscore the need for AI-driven validation of Gait Analyst Pro for both controlled and real-world applications, particularly during the Hajj pilgrimage.

References

Aldossari M, Aljoudi A, Celentano D. Health issues in the Hajj pilgrimage: A literature review. East Mediterr Health J. 2019;25(10):744-53. doi:10.26719/2019.25.10.744.

Barbieri FA, Rocha dos Santos PC, Vitório R, van Dieën JH, Bucken Gobbi LT. Effect of muscle fatigue and physical activity level in motor control of the gait of young adults. Gait Posture. 2013;38(4):702-7. doi:10.1016/j.gaitpost.2013.03.006.

Beauchet O, Allali G, Sekhon H, Verghese J, Guilain S, Steinmetz JP, et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The Biomathics and Canadian Gait Consortiums Initiative. Front Hum Neurosci. 2017;11:353. doi:10.3389/fnhum.2017.00353.

Ben Chaabane N, Conze PH, Lempereur M, et al. Quantitative gait analysis and prediction using artificial intelligence for patients with gait disorders. Sci Rep. 2023;13:23099. doi:10.1038/s41598-023-49883-8.

Berkner J, Meehan WP, Master CL, Howell DR. Gait and quiet-stance performance among adolescents after concussion-symptom resolution. J Athl Train. 2017;52(11):1089-95. doi:10.4085/1062-6050-52.11.16.

Bonanno M, De Nunzio AM, Quartarone A, Militi A, Petralito F, Calabrò RS. Gait analysis in neurorehabilitation: From research to clinical practice. Bioengineering. 2023;10(7):785. doi:10.3390/bioengineering10070785.

Centers for Disease Control and Prevention. Timed Up & Go (TUG) Test [Internet]. 2017. Available from: https://www.cdc.gov/steadi/pdf/STEADI-Assessment-TUG-508.pdf.

Ellis RJ, Ng YS, Zhu S, Tan DM, Anderson B, et al. A validated smartphone-based assessment of gait and gait variability in Parkinson’s disease. PLoS One. 2015;10(10):e0141694. doi:10.1371/journal.pone.0141694.

Hamacher D, Törpel A, Hamacher D, Schega L. The effect of physical exhaustion on gait stability in young and older individuals. Gait Posture. 2016;48:137-9. doi:10.1016/j.gaitpost.2016.05.007.

Harris EJ, Khoo I-H, Demircan E. A survey of human gait-based artificial intelligence applications. Front Robot AI. 2022;8:749274. doi:10.3389/frobt.2021.749274.

Herssens N, Verbecque E, Hallemans A, Vereeck L, Van Rompaey V. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture. 2018;64:181-90. doi:10.1016/j.gaitpost.2018.06.181.

Hollman JH, Watkins MK, Imhoff AC, Braun CE, Akervik KA, Ness DK. A comparison of variability in spatiotemporal gait parameters between treadmill and OG walking conditions. Gait Posture. 2016;43:204-9. doi:10.1016/j.gaitpost.2015.09.024.

Howell DR, Myer GD, Grooms D, Diekfuss J, Yuan W, Meehan WP. Examining motor tasks of differing complexity after concussion in adolescents. Arch Phys Med Rehabil. 2019;100(4):613-9. doi:10.1016/j.apmr.2018.09.113.

Jorunn L, Helbostad S, Leirfall R, Moe-Nilssen R, Sletvold O. Physical fatigue affects gait characteristics in older persons. J Gerontol A Biol Sci Med Sci. 2007;62(9):1010-5. doi:10.1093/gerona/62.9.1010.

Kainz H, Graham D, Edwards J, Walsh HPJ, Maine S, Boyd RN, et al. Reliability of four models for clinical gait analysis. Gait Posture. 2017;54:325-31. doi:10.1016/j.gaitpost.2017.04.001.

Kear BM, Guck TP, McGaha AL. Timed Up and Go (TUG) test: Normative reference values for ages 20 to 59 years and relationships with physical and mental health risk factors. J Prim Care Community Health. 2017;8(1):9-13. doi:10.1177/2150131916659282.

Krebs DE, Edelstein JE, Fishman S. Reliability of observational kinematic gait analysis. Phys Ther. 1985;65(7):1027-33. doi:10.1093/ptj/65.7.1027.

Lindemann U. Spatiotemporal gait analysis of older persons in clinical practice and research: Which parameters are relevant? Z Gerontol Geriatr. 2020;53(2):171-8. doi:10.1007/s00391-019-01605-x.

Liu X, Zhao C, Zheng B, Guo Q, Duan X, Wulamu A, et al. Wearable devices for gait analysis in intelligent healthcare. Front Comput Sci. 2021; doi:10.3389/fcomp.2021.661676.

McCalmont G, et al. eZiGait: Toward an AI gait analysis and assistant system. 2018 IEEE Int Conf Bioinform Biomed. 2018:2280-6. doi:10.1109/BIBM.2018.8621176.

McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture. 2009;29(3):360-9. doi:10.1016/j.gaitpost.2008.09.003.

Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors. 2014;14(2):3362-94. doi:10.3390/s140203362.

Murtagh EM, Mair JL, Aguiar E, et al. Outdoor walking speeds of apparently healthy adults: A systematic review and meta-analysis. Sports Med. 2021;51(1):125-41. doi:10.1007/s40279-020-01351-3.

Perry J, Burnfield JM. Gait analysis: Normal and pathological function. 2nd ed. SLACK Incorporated; 2010.

Rahlf AL, Petersen AM, Zech A. Reliability of mobile gait analysis applications for spatial-temporal parameters. Gait Posture. 2019;69:69-73.

Semaan MB, Wallard L, Ruiz V, Gillet C, Leteneur S, Simoneau-Buessinger E. Is treadmill walking biomechanically comparable to OG walking? A systematic review. Gait Posture. 2022;92:249-57. doi:10.1016/j.gaitpost.2021.11.009.

Stenum J, Hsu MM, Pantelyat AY, Roemmich RT. Clinical gait analysis using video-based pose estimation: Multiple perspectives, clinical populations, and measuring change. PLoS Digit Health. 2024;3(3):e0000467. doi:10.1371/journal.pdig.0000467.

Syczewska M, Graff K, Kalinowska M, Szczerbik E, Domaniecki J. Influence of the structural deformity of the spine on gait pathology in scoliotic patients. Gait Posture. 2012;35(2):209-13. doi:10.1016/j.gaitpost.2011.09.001.

Whittle MW. Gait analysis: An introduction. 4th ed. Butterworth-Heinemann; 2007.

Downloads

Published

2024-12-31

How to Cite

Demyati, H. A., Radhwan, A. M. ., Alrubaiani, Y. A. ., Alshahrani, T. I. ., Ayoub, T. Y. ., Khashougji, D. A. ., Alshahrani, R. Y. ., Saber, M. K. ., & Alharbi, M. M. . (2024). Reliability of Gait Analyst Pro for Measuring Spatial-Temporal Gait Parameters in Pilgrimages. International Journal of Physical Therapy Research &Amp; Practice, 3(11), 436–446. https://doi.org/10.62464/ijoprp.v3i11.65

Issue

Section

ARTICLE