Biomechanical Demand during 90° and 135° Cutting Manoeuvres: Implications for Anterior Cruciate Ligament Injury

Authors

  • Ayman Alhammad Department of Physiotherapy, College of Medical Rehabilitation Sciences, Taibah University, Almadinah Almunawarah, Saudi Arabia.
  • Lee Herrington Human Movement and Rehabilitation, School of Health and Society, University of Salford, Salford, UK.
  • Paul Jones Human Movement and Rehabilitation, School of Health and Society, University of Salford, Salford, UK.
  • Omar W. Althomali Department of Physiotherapy, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia.
  • Richard Jones Human Movement and Rehabilitation, School of Health and Society, University of Salford, Salford, UK.

DOI:

https://doi.org/10.62464/ijoprp.v3i7.43

Keywords:

Abduction moment, Screening, Side-step, Kinematics, Kinetics, Cutting

Abstract

Background:  Anterior cruciate ligament (ACL) injuries in athletes have financial and health consequences and are considered career-threatening. The current study aimed to shed light on biomechanical differences between various change of direction (COD) manoeuvres. Understanding such differences is important, given their association with the incidence of non-contact ACL injuries. Methods:  Thirty-six male recreational soccer players participated and performed 90° and 135° COD manoeuvres. For gait analysis, the Vicon system was used. The speed and shoe-surface interface were standardized in the COD manoeuvres. Paired sample t-tests were used to compare conditions. Results:  A Greater peak external knee abduction moment (PEKAM) (p<0.001) and knee abduction angle at initial contact (IC) (p<0.001) in the 135° COD manoeuvre compared to the 90° COD manoeuvre were observed, highlighting the increased injury risk potential at greater COD angles. In addition, the hip sagittal plane range of motion (RoM) from IC to peak knee valgus angle was higher in the 135° COD manoeuvre than 90° COD manoeuvre (p<0.001). Conclusion:  The results of the current study support the idea that ACL biomechanical risk factors are angle-dependent. A sharper cutting angle showed a higher risk of ACL injury due to the increase in the PEKAM and the knee abduction angle at initial contact. Therefore, players should be trained to reduce high PEKAM and the knee abduction angle by using different strategies.

References

Ardern, C. L., Taylor, N. F., Feller, J. A., & Webster, K. E. (2014). Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. British Journal of Sports Medicine, 48(21), 1543–1552. https://doi.org/10.1136/bjsports-2013-093398

Baptista, I., Johansen, D., Seabra, A., & Pettersen, S. (2018). Position specific player load during match-play in a professional football club. PLOS ONE, 13, e0198115. https://doi.org/10.1371/journal.pone.0198115

Benis, R., LA Torre, A., & Bonato, M. (2018). Anterior cruciate ligament injury profile in female elite Italian basketball league. The Journal of Sports Medicine and Physical Fitness, 58(3), 280–286. https://doi.org/10.23736/S0022-4707.16.06663-9

Besier, T. F., Lloyd, D. G., Cochrane, J. L., & Ackland, T. R. (2001). External loading of the knee joint during running and cutting maneuvers. Medicine and Science in Sports and Exercise, 33(7), 1168–1175. https://doi.org/10.1097/00005768-200107000-00014

Bloomfield, J., Polman, R., & O’Donoghue, P. (2007). Physical Demands of Different Positions in FA Premier League Soccer. Journal of Sports Science & Medicine, 6(1), 63–70. https://pubmed.ncbi.nlm.nih.gov/24149226

Cochrane, J. L., Lloyd, D. G., Besier, T. F., Elliott, B. C., Doyle, T. L. A., & Ackland, T. R. (2010). Training affects knee kinematics and kinetics in cutting maneuvers in sport. Medicine and Science in Sports and Exercise, 42(8), 1535–1544. https://doi.org/10.1249/MSS.0b013e3181d03ba0

Cohen, J. (1988). Statistical Power Analysis for the Behavioural Science (2nd Edition). In Statistical Power Anaylsis for the Behavioral Sciences.

Colby, S., Francisco, A., Yu, B., Kirkendall, D., Finch, M., & Garrett, W. J. (2000). Electromyographic and kinematic analysis of cutting maneuvers. Implications for anterior cruciate ligament injury. The American Journal of Sports Medicine, 28(2), 234–240. https://doi.org/10.1177/03635465000280021501

Collins, T. D., Ghoussayni, S. N., Ewins, D. J., & Kent, J. A. (2009). A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. Gait & Posture, 30(2), 173–180. https://doi.org/10.1016/j.gaitpost.2009.04.004

Cortes, N., Onate, J., & Van Lunen, B. (2011). Pivot task increases knee frontal plane loading compared with sidestep and drop-jump. Journal of Sports Sciences, 29(1), 83–92. https://doi.org/10.1080/02640414.2010.523087

Cumps, E., Verhagen, E., Annemans, L., & Meeusen, R. (2008). Injury rate and socioeconomic costs resulting from sports injuries in Flanders: data derived from sports insurance statistics 2003. British Journal of Sports Medicine, 42(9), 767–772. https://doi.org/10.1136/bjsm.2007.037937

Dos’Santos, T., Thomas, C., Comfort, P., & Jones, P. A. (2018). The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. In Sports Medicine. https://doi.org/10.1007/s40279-018-0968-3

Dos’Santos, T., Thomas, C., & Jones, P. A. (2021). The effect of angle on change of direction biomechanics: Comparison and inter-task relationships. Journal of Sports Sciences. https://doi.org/10.1080/02640414.2021.1948258

Edwards, S., Steele, J. R., Cook, J. L., Purdam, C. R., & McGhee, D. E. (2012). Lower limb movement symmetry cannot be assumed when investigating the stop-jump landing. Medicine and Science in Sports and Exercise. https://doi.org/10.1249/MSS.0b013e31824299c3

Fox, A. S., Bonacci, J., McLean, S. G., & Saunders, N. (2017). Efficacy of ACL injury risk screening methods in identifying high-risk landing patterns during a sport-specific task. Scandinavian Journal of Medicine & Science in Sports, 27(5), 525–534. https://doi.org/10.1111/sms.12715

Grassi, A., Smiley, S. P., Roberti di Sarsina, T., Signorelli, C., Marcheggiani Muccioli, G. M., Bondi, A., Romagnoli, M., Agostini, A., & Zaffagnini, S. (2017). Mechanisms and situations of anterior cruciate ligament injuries in professional male soccer players: a YouTube-based video analysis. European Journal of Orthopaedic Surgery & Traumatology : Orthopedie Traumatologie, 27(7), 967–981. https://doi.org/10.1007/s00590-017-1905-0

Hase, K., & Stein, R. B. (1999). Turning strategies during human walking. Journal of Neurophysiology, 81(6), 2914–2922. https://doi.org/10.1152/jn.1999.81.6.2914

Havens, K. L., & Sigward, S. M. (2015a). Cutting mechanics: relation to performance and anterior cruciate ligament injury risk. Medicine and Science in Sports and Exercise, 47(4), 818–824. https://doi.org/10.1249/MSS.0000000000000470

Havens, K. L., & Sigward, S. M. (2015b). Joint and segmental mechanics differ between cutting maneuvers in skilled athletes. Gait & Posture, 41(1), 33–38. https://doi.org/10.1016/j.gaitpost.2014.08.005

Hewett, T., & Bates, N. (2017). Preventive Biomechanics: A Paradigm Shift With a Translational Approach to Injury Prevention. The American Journal of Sports Medicine, 45, 036354651668608. https://doi.org/10.1177/0363546516686080

Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Colosimo, A. J., McLean, S. G., Van Den Bogert, A. J., Paterno, M. V., & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. American Journal of Sports Medicine. https://doi.org/10.1177/0363546504269591

Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S. J., Colosimo, A. J., McLean, S. G., van den Bogert, A. J., Paterno, M. V, & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. The American Journal of Sports Medicine, 33(4), 492–501. https://doi.org/10.1177/0363546504269591

Imwalle, L., Myer, G., Ford, K., & Hewett, T. (2009). Relationship Between Hip and Knee Kinematics In Athletic Women During Cutting Maneuvers: A Possible Link to Noncontact Anterior Cruciate Ligament Injury and Prevention. Journal of Strength and Conditioning Research / National Strength & Conditioning Association, 23(8), 2223–2230. https://doi.org/10.1519/JSC.0b013e3181bc1a02

Johnston, J. T., Mandelbaum, B. R., Schub, D., Rodeo, S. A., Matava, M. J., Silvers-Granelli, H. J., Cole, B. J., ElAttrache, N. S., McAdams, T. R., & Brophy, R. H. (2018). Video Analysis of Anterior Cruciate Ligament Tears in Professional American Football Athletes. The American Journal of Sports Medicine, 46(4), 862–868. https://doi.org/10.1177/0363546518756328

Jones, P. A., Herrington, L. C., & Graham-Smith, P. (2015). Technique determinants of knee joint loads during cutting in female soccer players. Human Movement Science, 42, 203–211. https://doi.org/https://doi.org/10.1016/j.humov.2015.05.004

Kadaba, M. P., Ramakrishnan, H. K., Wootten, M. E., Gainey, J., Gorton, G., & Cochran, G. V. B. (1989). Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. Journal of Orthopaedic Research, 7(6), 849–860. https://doi.org/10.1002/jor.1100070611

Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., Bahr, R., & Krosshaug, T. (2010). Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. The American Journal of Sports Medicine, 38(11), 2218–2225. https://doi.org/10.1177/0363546510373570

Kristianslund, E., Faul, O., Bahr, R., Myklebust, G., & Krosshaug, T. (2014). Sidestep cutting technique and knee abduction loading: implications for ACL prevention exercises. British Journal of Sports Medicine, 48(9), 779–783. https://doi.org/10.1136/bjsports-2012-091370

Leppänen, M., Pasanen, K., Krosshaug, T., Kannus, P., Vasankari, T., Kujala, U. M., Bahr, R., Perttunen, J., & Parkkari, J. (2017). Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study. Orthopaedic Journal of Sports Medicine, 5(12), 2325967117745487. https://doi.org/10.1177/2325967117745487

Lohmander, L. S., Englund, P. M., Dahl, L. L., & Roos, E. M. (2007). The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. The American Journal of Sports Medicine, 35(10), 1756–1769. https://doi.org/10.1177/0363546507307396

Malinzak, R. A., Colby, S. M., Kirkendall, D. T., Yu, B., & Garrett, W. E. (2001). A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clinical Biomechanics (Bristol, Avon), 16(5), 438–445. https://doi.org/10.1016/s0268-0033(01)00019-5

Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A., & Slauterbeck, J. L. (1995). Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 13(6), 930–935. https://doi.org/10.1002/jor.1100130618

Markolf, K. L., Gorek, J. F., Kabo, J. M., & Shapiro, M. S. (1990). Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. The Journal of Bone and Joint Surgery. American Volume, 72(4), 557–567.

Marshall, B., Franklyn-Miller, A., Moran, K., King, E., Richter, C., Gore, S., Strike, S., & Falvey, É. (2015). Biomechanical symmetry in elite rugby union players during dynamic tasks: an investigation using discrete and continuous data analysis techniques. BMC Sports Science, Medicine & Rehabilitation, 7, 13. https://doi.org/10.1186/s13102-015-0006-9

McLean, S. G., Huang, X., & van den Bogert, A. J. (2005). Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clinical Biomechanics (Bristol, Avon), 20(8), 863–870. https://doi.org/10.1016/j.clinbiomech.2005.05.007

Montgomery, C., Blackburn, J., Withers, D., Tierney, G., Moran, C., & Simms, C. (2018). Mechanisms of ACL injury in professional rugby union: a systematic video analysis of 36 cases. British Journal of Sports Medicine, 52(15), 994–1001. https://doi.org/10.1136/bjsports-2016-096425

Nedergaard, N. J., Kersting, U., & Lake, M. (2014). Using accelerometry to quantify deceleration during a high-intensity soccer turning manoeuvre. Journal of Sports Sciences, 32(20), 1897–1905. https://doi.org/10.1080/02640414.2014.965190

Neuman, P., Englund, M., Kostogiannis, I., Fridén, T., Roos, H., & Dahlberg, L. E. (2008). Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. The American Journal of Sports Medicine, 36(9), 1717–1725. https://doi.org/10.1177/0363546508316770

Paterno, M. V, Schmitt, L. C., Ford, K. R., Rauh, M. J., Myer, G. D., Huang, B., & Hewett, T. E. (2010). Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. The American Journal of Sports Medicine, 38(10), 1968–1978. https://doi.org/10.1177/0363546510376053

Pollard, C. D., Davis, I. M., & Hamill, J. (2004). Influence of gender on hip and knee mechanics during a randomly cued cutting maneuver. Clinical Biomechanics (Bristol, Avon), 19(10), 1022–1031. https://doi.org/10.1016/j.clinbiomech.2004.07.007

Queen, R. M., Gross, M. T., & Liu, H. Y. (2006). Repeatability of lower extremity kinetics and kinematics for standardized and self-selected running speeds. Gait and Posture, 23(3), 282–287. https://doi.org/10.1016/j.gaitpost.2005.03.007

Robinson, G., O’Donoghue, P., & Wooster, B. (2011). Path changes in the movement of English Premier League soccer players. The Journal of Sports Medicine and Physical Fitness, 51(2), 220–226.

Roewer, B. D., Ford, K. R., Myer, G. D., & Hewett, T. E. (2012). The “impact” of force filtering cut-off frequency on the peak knee abduction moment during landing: Artefact or “artifiction.” British Journal of Sports Medicine, 48(6), 464–468. https://doi.org/10.1136/bjsports-2012-091398

Schreurs, M. J., Benjaminse, A., & Lemmink, K. A. P. M. (2017). Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes. Journal of Biomechanics, 63, 144–150. https://doi.org/10.1016/j.jbiomech.2017.08.019

Sigward, S. M., Cesar, G. M., & Havens, K. L. (2015). Predictors of Frontal Plane Knee Moments During Side-Step Cutting to 45 and 110 Degrees in Men and Women: Implications for Anterior Cruciate Ligament Injury. Clinical Journal of Sport Medicine : Official Journal of the Canadian Academy of Sport Medicine, 25(6), 529–534. https://doi.org/10.1097/JSM.0000000000000155

Sigward, S. M., & Powers, C. M. (2006). The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clinical Biomechanics (Bristol, Avon), 21(1), 41–48. https://doi.org/10.1016/j.clinbiomech.2005.08.001

Thomas, Silverman, S. J., & Nelson, J. K. (2015). Research Methods in Physical Activity (7th Editio). Human Kinetics, Inc.

Vanrenterghem, J., Venables, E., Pataky, T., & Robinson, M. A. (2012). The effect of running speed on knee mechanical loading in females during side cutting. Journal of Biomechanics, 45(14), 2444–2449. https://doi.org/10.1016/j.jbiomech.2012.06.029

Waldén, M., Krosshaug, T., Bjørneboe, J., Andersen, T., Faul, O., & Hägglund, M. (2015). Three distinct mechanisms predominate in noncontact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. British Journal of Sports Medicine, 49. https://doi.org/10.1136/bjsports-2014-094573

Winter, D. a. (2009). Biomechanics and motor control of human gait. In Motor Control. https://doi.org/10.1002/9780470549148

Yu, B., Lin, C.-F., & Garrett, W. E. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics (Bristol, Avon), 21(3), 297–305. https://doi.org/10.1016/j.clinbiomech.2005.11.003

Downloads

Published

2024-08-30

How to Cite

Alhammad, A. ., Herrington, L. ., Jones, P., W. Althomali, O., & Jones, R. (2024). Biomechanical Demand during 90° and 135° Cutting Manoeuvres: Implications for Anterior Cruciate Ligament Injury. International Journal of Physical Therapy Research &Amp; Practice, 3(7), 294–306. https://doi.org/10.62464/ijoprp.v3i7.43

Issue

Section

ARTICLE